Effects of shape and size polydispersity on strength properties of granular materials.
نویسندگان
چکیده
By means of extensive contact dynamics simulations, we analyze the combined effects of polydispersity both in particle size and in particle shape, defined as the degree of shape irregularity, on the shear strength and microstructure of sheared granular materials composed of pentagonal particles. We find that the shear strength is independent of the size span, but unexpectedly, it declines with increasing shape polydispersity. At the same time, the solid fraction is an increasing function of both the size span and the shape polydispersity. Hence, the densest and loosest packings have the same shear strength. At the scale of the particles and their contacts, we analyze the connectivity of particles, force transmission, and friction mobilization as well as their anisotropies. We show that stronger forces are carried by larger particles and propped by an increasing number of small particles. The independence of shear strength with regard to size span is shown to be a consequence of contact network self-organization, with the falloff of contact anisotropy compensated by increasing force anisotropy.
منابع مشابه
Particle-scale origins of shear strength in granular media
The shear strength of cohesionless granular materials is generally attributed to the compactness or anisotropy of their microstructure. An open issue is how such compact or anisotropic microstructures, and thus the shear strength, depend on the particle properties. We first recall the role of fabric and force anisotropies with respect to the critical-state shear stress. Then, a model of accessi...
متن کاملEffects of Aggregate Gradation on Resilient Modulus and CBR in Unbound Granular Materials
Resilient modulus and California Bearing Ratio (CBR) in unbound granular materials are the key technical characteristics of layers in a flexible pavement design. Among the factors affecting these two parameters, the aggregate gradation is the most important. Using particle size distribution curve developed by AASHTO, together with other considerations mentioned in the related regulations have y...
متن کاملRole of Intensive Milling on Microstructural and Physical Properties of Cu80Fe20/10CNT Nano-Composite
Carbon nano-tube (CNT) reinforced metal matrix nano-composites have attracted a great deal of attention in recent years due to the outstanding physical and mechanical properties of CNTs. However, utilizing CNT as reinforcement for alloy matrixes has not been studies systematically and is still a challenging issue. In the present study, Cu80Fe20/10CNT nanocomposite was synthesized by mechanical ...
متن کاملMicrostructure evolution during impact on granular matter.
We study the impact of an intruder on a dense granular material. The process of impact and interaction between the intruder and the granular particles is modeled using discrete element simulations in two spatial dimensions. In the first part of the paper we discuss how the intruder's dynamics depends on (1) the intruder's properties, including its size, shape and composition, (2) the properties...
متن کاملInfluence of polydispersity on micromechanics of granular materials.
We study the effect of polydispersity on the macroscopic physical properties of granular packings in two and three dimensions. A mean-field approach is developed to approximate the macroscale quantities as functions of the microscopic ones. We show that the trace of the fabric and stress tensors are proportional to the mean packing properties (e.g., packing fraction, average coordination number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2015